RetroSkeleton: Retrofitting Android Apps

Benjamin Davis
University of California, Davis

bendavis@ucdavis.edu

ABSTRACT

An obvious asset of the Android platform is the tremendous num-
ber and variety of available apps. There is a less obvious, but po-
tentially even more important, benefit to the fact that nearly all apps
are developed using a common platform. We can leverage the rela-
tively uniform nature of Android apps to allow users to tweak appli-
cations for improved security, usability, and functionality with rela-
tive ease (compared to desktop applications). We design and imple-
ment an Android app rewriting framework for customizing behav-
ior of existing applications without requiring source code or app-
specific guidance. Following app-agnostic transformation policies,
our system rewrites applications to insert, remove, or modify be-
havior. The rewritten application can run on any unmodified An-
droid device, without requiring rooting or other custom software.

This paper describes RetroSkeleton, our app rewriting frame-
work, including static and dynamic interception of method invoca-
tions, and creating policies that integrate with each target app. We
show that our system is capable of supporting a variety of useful
policies, including providing flexible fine-grained network access
control, building HTTPS-Everywhere functionality into apps, im-
plementing automatic app localization, informing users of hidden
behavior in apps, and updating apps depending on outdated APIs.
We evaluate these policies by rewriting and testing more than one
thousand real-world apps from Google Play.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Android; Dalvik; VM; bytecode; rewriting

1. INTRODUCTION

Android is now the dominant smartphone platform for new de-
vices sold, with a 68.1% market share of smartphones shipped in
the second quarter of 2012 according to the International Data Cor-
poration Worldwide Quarterly Mobile Phone Tracker [20]. A major

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiSys’13, June 25-28, 2013, Taipei, Taiwan

Copyright 2013 ACM 978-1-4503-1672-9/13/06 ...$15.00.

Hao Chen

University of California, Davis
chen@ucdavis.edu

feature of the Android platform is the tremendous number of third-
party Android apps available for users to install on their devices,
with more than 700,000 Android apps [26] available on Google
Play [5] alone.

Many Android apps have access to a wide variety of sensitive in-
formation, including banking and payment details, email and mes-
saging content, photos, and browsing history. It may be difficult for
a user to determine exactly what an app may do, so the user must
rely on their limited assessment of the trustworthiness of the devel-
opers of the app, and of any included third-party libraries. Most
users with devices associated with a telecommunication provider
either can not or do not root their devices, which can be a risky and
unsupported operation. Without access to privileged and low-level
functionality, these users are left with even less control over what
apps may do on their device than on traditional desktop systems.
For these reasons, commonplace practices on traditional desktop
PCs, such as installing a third-party firewall to monitor incoming
and outgoing connections, cannot be performed on most stock de-
vices. The controls provided by the Android platform, such as the
permission system, are extremely limited, coarse-grained and in-
flexible. For example, if a user installs an apps that requests the
INTERNET permission, then the app is granted permanent, unlim-
ited access to the network.

Our work is based on the observation that the vast majority of
Android apps (estimated over 95% [28]]) are entirely compiled into
Dalvik bytecode (i.e., containing no native code). Not only are
most apps built on the same framework, but the Dalvik bytecode
does not include the ambiguity that frequently makes analysis of
other compiled software (e.g. x86 machine code) impractical. We
take advantage of the consistency in app implementation to design
and implement an Android app rewriting framework for customiz-
ing behavior of existing applications without requiring source code
or app-specific guidance. We call our app rewriting system Ret-
roSkeleton after the ability to retrofit apps with new behavior by
modifying their internals.

RetroSkeleton can be used to provide users with more control
over the security, usability, and functionality of apps, even com-
pared to desktop applications. We provide a system for automat-
ically embedding policies completely into applications via auto-
mated app rewriting to insert, remove, or modify app behavior.
Our system is capable of supporting a wide range of flexible, cus-
tomizable transformation policies that can be written and applied
to apps automatically without any app-specific knowledge or guid-
ance. In this paper we describe several different policies we have
implemented and applied to real apps, providing features such as
fine-grained network access control, HTTPS-Everywhere features,
or on-the-fly localization of app UI elements. Apps transformed

by our rewriting system can be installed on stock, unmodified and
unrooted Android devices.

Our Android app rewriting system was designed to have four
important properties:

o Complete: intercept all target method invocations, including
dynamic invocation via reflection

e Flexible: powerful enough to support a variety of complex
transformation policies

e App-Independent: no manual app-specific guidance needed
to create or apply transformation policies

e Deployable: rewritten apps work on unrooted, unmodified
Android devices, no additional software required

1.1 Threat Model

We assume that the user of a rewritten app trusts the Android
platform, the transformation policy writer and rewriting process,
but not the original app code. We do not attempt to hide the fact
that the app has been modified from the rewritten app.

1.2 Contributions
In this paper, we make the following contributions.

e Design and implementation of an Android app rewriting sys-
tem capable of replacing arbitrary method calls with custom
handlers

e Flexible framework supporting the application of app-agnostic
transformation policies to arbitrary Android apps

e Sample transformation policies, including the integration of
fine-grained access control, improved security of network
communications, and automatic localization of UI elements

e Application and evaluation of these polices to over one thou-
sand real-world apps available via Google Play

A major contribution of our system is the ability for policy-
writers to specify high-level policies that can be applied to arbitrary
apps automatically without any app-specific guidance. Policy writ-
ers identify the Java methods of interest and write Java source code,
or higher level functions that generate Java source, for the bytecode
operations they wish to embed into rewritten apps. Our system au-
tomatically generates all handler classes, methods, and supporting
code to intercept all method calls of interest, even those invoked via
reflection. Our system can apply a single policy to any real-world
app automatically without requiring app-specific guidance.

2. DESIGN

We change application behavior by intercepting method invoca-
tions in Android apps. In our system, we call the methods we inter-
cept the rarget methods. Wherever the original app would have in-
voked a target method, our rewritten app instead calls a new method
we’ve added to the app. We call these new methods we add to
rewritten apps method handlers. Generally, each target method has
its own corresponding handler. The transformation policy includes
the list of target methods and the Java source code for each associ-
ated handler method. A person we call the policy writer creates a
transformation policy that can be applied to any arbitrary app (these
policies are app-agnostic). A user of our rewriting system provides
a transformation policy and an Android app as input to our rewrit-
ing system. Our rewriting system analyzes the app, augments and

applies the transformation policy without any user guidance, and
produces a new, stand-alone Android app suitable for deployment
to an unmodified Android device. We include a high level view of
the components of our rewriting system design in Figure Il

2.1 Approach: Method Interception

Typical policies regulate how apps interact with the sensors, data
and other resources of the system. We intercept method calls be-
cause they are the primary mechanism that Android apps use to
interact with the underlying device. For example, apps use method
calls into the Android platform API to send and receive data over
the network, access the GPS and other sensor data, read and write
data to the address book and other stores, and manage the UI. Pol-
icy writers can take advantage of existing knowledge of the An-
droid platform when designing transformation policies, rather than
building policies around the implementation details of how certain
app behavior may manifest itself in low-level system calls invoked
by the Dalvik virtual machine.

2.2 Identifying Method Invocations

Most Android apps are written in Java, and compiled down to
bytecode that runs on Android’s Dalvik virtual machine. While the
architecture is different, Dalvik bytecode is at a similar level of ab-
straction to that of the Java virtual machine. Specifically, instruc-
tions in Dalvik bytecode are clearly defined by the specification
and can be interpreted without the ambiguities that complicate the
analysis some other platforms such as x86 machine-code.

In Dalvik bytecode there are several instructions for method in-
vocation. Method call instructions include the invocation type (e.g.
static, direct, virtual, super), the method signature (which includes
the parent class, method name, and parameter types), and the reg-
isters associated with the call. It is not always possible to identify
the exact method that will be executed at runtime, due to virtual
method invocation, inheritance and related concepts. For example,
a method call instruction may specify a method signature for the
parent class of the object on which the instruction is invoked at run-
time. If the object is the instance of a class that extends the parent
class and overrides the method in question, a virtual method invo-
cation specifying Parent->method will execute Child->method
at runtime. There are many cases that much be addressed when
building a general system for identifying and intercepting method
calls of any type, which are complicated with issues such as pro-
tected methods, final methods, and so on. So while it is easy to
identify method-invocation instructions, we must adopt a number
of strategies to ensure that we intercept all target method invoca-
tions despite these challenges.

2.3 Method Handler Design

Our strategy for method interception is based on our previous
work for a system called [-ARM-Droid [[11]. This previous work
describes method interception as a means for implementing inline
reference monitors in Android apps. We leverage the method inter-
ception strategy from this earlier work to build our generalized and
complete rewriting system. In this section we give an overview of
the strategies involved with intercepting different types of method
invocations.

We intercept method invocations by identifying all of the instruc-
tions that may invoke a target method, and replace them with in-
structions to invoke one of our handler method and store the result
in the appropriate register. These method handlers may perform
any operations described in the transformation policy, which may
include invoking the original method call and returning the result
(e.g. after notifying or asking the user). To support this kind of dy-

POLICY
POLICY method compile
WRITER | | handlers
. . handler
target || _ ’ie"t_’]fy method
methods bytecode
| .
target replace handler dssemble rewritten
APP | method ~ method andisign| app
DEVELOPER original y/ invocations invocations
e
a
PP T rest of |nochange| rest of
original app original app

Figure 1: RetroSkeleton System Diagram

namic runtime introspection in our method handlers, our rewritten
applications pass all of the original instance objects and parame-
ters involved in the target method call to our handler methods. We
require a number of different approaches to handle all of the ways
target methods may be invoked.

2.3.1 Stub Methods

Static Methods We replace calls to a public, static target method
(such as the loadLibrary method in java.lang.System) with a
call to a static, public handler method that takes the same parame-
ters. We call these static, public handlers stub methods. Our stub
methods receive all of the same parameters as the original target
method would have, and returns a value of the same return type.
Because the stub methods receive all of the original parameters,
the handler may invoke the original target method from within the
handler if desired.

Instance Methods Normal instance method invocations can also
be replaced with calls to stub methods. For example, imagine an
app invoking the openStream method on a java.net.URL object
instance. Because the openStream method is final, we know that
the object must be a URL object (as opposed to some child class
that has overridden the method). We replace this method invoca-
tion with an invocation of a static stub method. However, we also
pass the instance on which the target method is invoked to the stub
method handlers for instance target methods. In our example, our
static stub handler for openStream receives the URL object as a pa-
rameter, which it may inspect and perhaps invoke the original target
method from within the handler, as specified by the transformation
policy.

Constructors We replace invocations of target constructors with
calls to our associated static stub “factory” methods that receive
the same parameters as the original target constructor. Inside these
static handlers, we create an object of the appropriate type and re-
turn the object back to the original application. We also insert a
move instruction that copies the reference to the new object re-
turned from the static handler into the register on which the con-
structor was originally invoked.

Occasionally, this approach can result in bytecode that does not
pass verification. Dalvik bytecode is register-based, with “virtual”
registers local to each method. Constructors are invoked on reg-
isters containing uninitialized references to an object, and the ob-
ject is initialized in place. However, with our approach, bytecode
restrictions prevent us from passing uninitialized references to our
factory methods, so we create a new object and return the new refer-
ence. If two registers contain the same reference to an uninitialized
object, and we replace the constructor invoked on one with a call

to our stub method, we update one register with the new object but
the other register still refers to the uninitialized object. The bytcode
verifier can detect when later instructions in the method may refer
to the uninitialized object and will prevent the app from executing
on an Android device.

While this issue is responsible for the majority of app failures in
our evaluation (see Section[5.2.2)), it is still relatively rare in prac-
tice (detected in less than 7% of apps tested with our policies). We
could resolve this issue by analyzing the register usage in the same
way as the bytecode verifier and copying our new object into all
necessary registers, but we have not yet implemented this function-
ality.

2.3.2 Wedge Classes

While the simple stub-method-based approaches described above
cover many cases, we need a separate technique to handle the use
of inheritance and virtual method invocations frequently found in
Android apps. We handle the remaining cases by analyzing the
classes declared in each Android app during rewriting, and inject-
ing classes providing handler methods into the object hierarchy of
the original app.

Developers of Android apps often create new classes that extend
existing classes. Assume we wish to intercept the bind method for
the DatagramSocket class in the java.net package. Consider
the case when an app developer creates a DevSocket class that
extends DatagramSocket. The way we handle the invocation of
the bind method on an instance of the developer’s class depends
on the goals of our policy.

Full-hierarchy interception Our system supports full-hierarchy
interception, which means that for any class A with target method
m in our transformation policy, our rewritten app should also inter-
cept all invocations of m on objects of type B where B extends A.
Our rewriting system analyzes all classes in an app and identifies
all classes that extend target classes specified in the transformation
policy. For these cases, our system can automatically add B’s m to
the list of target methods and generate the associated handler code
and rewrite as normal.

Partial-hierarchy interception In practice, however, we find
that it is often more useful to only intercept method calls that in-
voke the method in the parent class. For example, many Android
platform methods provide the API to low-level interactions with
the underlying device, such as sensor, network, and file system ac-
cess. Many useful transformation policies control the app’s ability
to interact with the API in the framework, but are not concerned
with intercepting developer methods that override target methods
without invoking the original target method.

For example, if the developer creates a DevSocket class that ex-
tends DatagramSocket and overrides the bind method with an
implementation that performs no network operations, a transfor-
mation policy controlling network access would not want to inter-
cept this method. On the other hand, if the developer overrides
toString with code that invokes super . bind then we would want
to intercept this request.

We provide this functionality by generating wedge classes that
extend non-final classes containing target methods, and include
wedge method handlers for each target method in the parent class.
In our example, our wedge class would extend DatagramSocket
and override bind, implementing the handler method behavior. Our
rewriting system also identifies all classes extending the target class,
and modifies them to instead extend our wedge class, and replace
all internal calls (e.g. via super) as appropriate.

In our rewritten app, invoking the bind method on an instance
of DevSocket only invokes our handler when DevSocket has not
overridden bind, or if the developer’s class calls super . bind from
within the class. This allows us to properly intercept all and only
calls to the platform target methods, without intercepting developer
methods that do not invoke our target methods. This approach is
also useful for target methods that cannot be directly invoked, such
as methods marked with the protected access modifier.

2.3.3 Use of Stub Methods and Wedge Classes

We use both the stub and wedge class approach together so all
target methods are intercepted however they are invoked in the
rewritten app. Static, direct, and virtual method invocations on tar-
get methods are rewritten to stub method calls. Virtual and super
invocations on non-target methods that resolve to target methods
are intercepted by wedge methods. We do not generate stub or
wedge methods in cases where they are unnecessary. Specifically,
we do not wedge final or abstract methods or create stub methods
for target methods that cannot be called publicly. Section [will
describe how we handle special cases, such as reflection.

2.4 Method Handler Behavior

As described above, transformation policies primarily contain
two types of information. First, they contain a list of all target
methods, identified by method name, containing class, parameter
types, along with their associated data such as the return type, at-
tributes (protected, final, etc.) and checked exceptions declared.
Second, transfer policies describe the method handlers, which is
what executes whenever the original app would have invoked a tar-
get method.

In order to preserve application functionality as much as pos-
sible, our handler methods return values matching the return type
of the associated target method. When the target methods are re-
placed, the parameters (and instance object, when applicable) nor-
mally passed to the target method will be passed as parameters to
the handler. Because the parameter and return types of the tar-
get methods are specified in the transformation policy, along with
the appropriate attributes of the method (e.g. static, protected, fi-
nal), our system generates the appropriate signatures for all stub
and wedge methods. The policy writer only needs to specify the
body of these handler methods.

The method handler bodies are written in Java source code. This
design allows policy writers to work at the level of abstraction An-
droid apps are normally implemented, and apply existing platform
knowledge, experience and tools to guide policy development. In
order to preserve app behavior when possible, we require and con-
firm as part of the handler method compilation process that handler
methods return a value of the type the target method originally re-

turned. We also recommend that handler methods do not throw new
exceptions that the original app would not expect from an invoca-
tion of the target method, though we do not enforce this.

While policy writers may specify the source code for handler
methods directly as a string, we also allow policy writers to spec-
ify functions that generate the appropriate Java source to allevi-
ate the tedium of writing similar handlers for many methods (e.g.
logging a set of target methods to the Android logging system).
In many policies, method handlers may invoke the original target
method, perhaps after logging the request or performing an access
control check. We call the expression for invoking the original
target method from within the handler method (using the handler
method parameters) the passthrough behavior. Similarly, method
handlers may wish to avoid calling the original target method, but
must return a value to the application in order to preserve app be-
havior. Our system can also generate a reasonable default “deny”
expression based on the attributes of the target method. For tar-
get methods that return void, the handler may simply return. A
handler method could create and throw a new exception matching
a type declared by the target method. If there are no better alter-
natives, the handler could simply return null. Our system allows
policy writers to specify handler-generator functions that receive a
map of the target method properties, auto-generated passthrough
source, and auto-generated deny source at rewrite-time, and return
Java source. Policy writers are free to use or ignore the default
passthrough and deny behavior.

We also provide a separate namespace for policy writers to create
support classes for code outside of the handler method classes. This
allows policy writers to centralize and avoid duplication of code
across multiple handler methods.

2.5 Generating Support Code

In Android apps, all of the Dalvik bytecode is combined into a
single classes.dex file. All of our handler methods are specified
in Java source, but without the source code for the app we can-
not use the standard Android app development tools to recompile
the entire app. Instead, we generate the Dalvik bytecode for our
classes containing handler methods, then merge the bytecode with
the rewritten application bytecode before assembling the rewritten
app.

We use the Android development tools to create a new, nearly
empty Android project. We generate the source code for the classes
containing our handler methods into this project directory. All of
our handler classes are placed into a unique namespace that will
not collide with any classes in the original app. In each of our
wedge classes, we also generate constructors corresponding to each
constructor in the parent (target) class. Constructors are not auto-
matically inherited, so if a wedged class is expecting a particular
constructor to be present in the parent class, we must provide it in
our wedge class. These constructors simply invoke the associated
target classes’ constructor unless otherwise specified in the trans-
formation policy.

If the transformation policy has been augmented with target meth-
ods found in the original app, then the handler methods may have
developer classes used in the parameters or return type of these
target methods. If these developer classes do not exist in our sup-
port project, then the handler methods will fail to compile as the
types referenced will not be found. We do not have source code
for the original app’s classes, so instead we simply generate skele-
ton classes with the necessary types and methods. These skeleton
classes will not be included in the rewritten app, and are only used
so the Android build tools can compile the source for the handlers

(def mytargets
(merge
(mktarget
["Ljava/net/URL;" "openStream" []]
{:return "Ljava/io/InputStream;"
:exceptions ["java.io.IOException"]
:attributes #{:final}
:stub-policy policy-logcat})

(mktarget

["Landroid/app/Activity;"

"onResume" ["Landroid/os/Bundle;"]]
{:return "V"

:attributes #{:protected}

:wedge-policy policy-activity-update})))

Figure 2: Example Target Method Specification

and generate valid Dalvik bytecode with the appropriate type sig-
natures.

We use the official Android development tools to compile and
build an app containing Dalvik bytecode for all of our handler
classes. We disassemble the bytecode of this app and extract the
bytecode for all of the stub, wedge and other support classes in-
cluded in the policy. These classes exist in a package that will
not conflict with existing code in the app being rewritten. We
merge the bytecode for these classes into the app we are rewrit-
ing, and then assemble the result into a new classes.dex file in-
cluding all of the rewritten versions of the original app code and
our handler classes. We use the smali [18] Dalvik bytecode assem-
bler/disassembler to build our modified bytecode.

2.6 Transformation Policy Design

Policy writers specify policies in Clojure [3] (a Lisp dialect). The
main part of the policy is the description of the target methods and
method handler generators. The targets are specified as a map of
the tuple of the containing class, method name, and parameter types
of the target method, to a hashmap of various attributes including
the return type, checked exceptions (if any), non-default attributes
(if any) and the stub and wedge policies. We include a very sim-
ple definition in Figure This policy logs every time the URL-
>openStream method is invoked, and logs and updates a global
reference to the current Activity whenever Activity->onResume
is invoked. Note that URL class is final so its target methods are not
wedged, and the onResume method in Activity is protected, so it
does not have a static stub method.

The mktarget function generates the stub and wedge class names
and other default values. While policy writers can create custom
mktarget functions to set and automatically apply default stub and
wedge policies, we specify them explicitly in our example. Stub
and wedge policies are specified as functions that receive the tu-
ple describing the target method and the passthrough source and
produce the Java source code for the method handler. We also pro-
vide a helper function that passes the automatic deny code as well,
though we do not show this here.

The policy-logcat function produces the Java source to log
the containing class, method name, and parameter types to the An-
droid logcat logging facility with the tag “RWAPP” before invoking
the passthrough code. The policy-activity-update function
produces the Java source to update global reference to the current
Activity by passing the value of this to some of our support code,

(defn policy-logcat
[[contain-cls method-name param-types] _]
passthrough]

(str "android.util.Log.i(\"RWAPP\", \""
contain-cls "->" method-name
"(" (join param-types) ")"
"\";\Il")
passthrough))

(defn policy-activity-update
[target passthrough]

(str "rs.ActivityMon.setActivity(this);\n"
(policy-logcat target passthrough)))

Figure 3: Example Policy Implementations

before logging the request and invoking the passthrough code. See
Figure[Blfor the code listing for these two policies.

3. CHALLENGES
3.1 Reflection

Android apps can invoke methods specified dynamically via Java’s
reflection API. While the precise methods invoked via reflection
cannot always be identified statically, we can identify the calls to
the reflection API statically. For example, we statically identify and
rewrite calls to Java’s Method->invoke reflection method even
though the parameters may be determined at runtime.

Our handler methods for the reflection API perform dynamic in-
spection of the parameters to determine at runtime the method the
app is attempting to invoke via reflection. If it matches one of our
target methods, we instead invoke the associated target handler and
return the result, otherwise our handler performs the requested in-
vocation as expected. Our reflection handlers are recursive in the
sense that they can handle attempts to invoke the reflection API via
reflection.

3.2 Native Code

While it is relatively uncommon (estimated less than 5% by Zhou
et al. [28]]), Android applications may also include native code. Na-
tive code is compiled into machine-code specific to a particular ar-
chitecture, and the techniques for analyzing and instrumenting this
kind of code is outside the scope of this work. While we do not
attempt to make any guarantees about what native code may do
once invoked, we detect and prevent the invocation of native code
in rewritten apps by identifying the invocations of native code. Be-
fore rewriting an app, we analyze the bytecode and extract signa-
tures for all of the native methods. We augment the transformation
policy by adding these native methods to our targets list and gen-
erate method handlers for each. For example, in our fine-grained
network access control policy we automatically generate handlers
that log these calls and ask the user whether to allow or deny the
call to native code at runtime. We do not attempt to rewrite Android
apps written entirely in native code.

3.3 Intercepting Unexamined Code

Android apps have several mechanisms for dynamically generat-
ing or loading classes, bytecode, or libraries. We include signatures
for the methods that provide these capabilities to prevent rewritten

apps from executing unexamined code. Policy writers can specify
handlers for these methods that can block or allow these requests
dynamically based on runtime decisions (e.g. input from the user).

3.4 Integration with App UI

By embedding our policies directly into our rewritten apps, we
have the ability to achieve deep integration with the operation of
the rewritten app. It is particularly useful to be able to integrate into
the UI of the rewritten app. In Android, most operations involving
the UI must be made within the main (UI) thread, with a reference
to the current Context (such as the foreground Activity, Android’s
name for a GUI frame). These features may not be easily acces-
sible within all method handlers (e.g. invoked from a background
thread).

In order to simplify Ul-based operations made from within method
handlers invoked from a variety of contexts, we have implemented
a small support class and set of method handlers for various Activ-
ity lifecycle methods (e.g. the onCreate and onResume methods)
that maintain a globally accessible model of the current Activity
displayed to the user. This context can be used to execute events
on the UI thread, which we use to display notifications to the user
via dialog boxes, popup messages, and integration with app UI el-
ements in our example policies described below.

We build on this to provide a general mechanism that blocks
handler methods invoked from a background thread and perform-
ing some task in the UI thread before returning. Normally, dialog
boxes are requested asynchronously in Android, but we used this
mechanism to allow the user to make a decision about how to han-
dle a request in our fine-grained network access control policy. As
a convenience, these Ul support methods are available to all policy
writers, who are also free to implement their own.

4. APPLICATIONS OF REWRITING

To demonstrate the power, flexibility and practicality of our rewrit-
ing system, we have developed several example transformation poli-
cies. In this section we describe the design and implementation of
these policies. We evaluate the application of these policies to real-
world apps in Section 3

4.1 Fine-Grained Network Access Control

In Android if a user installs an app that requests the INTER-
NET permission then the app is granted unlimited access to make
network requests. To provide users with the ability to specify more
fine-grained control over the network connections an app can make,
we created a transformation policy that intercepts, logs, and pre-
vents apps from making unapproved network operations.

Target Methods Our transformation policy includes target meth-
ods for Android platform methods that perform network operations,
including methods in the URL, URLConnection, Socket and re-
lated classes. Any time the original application would have made a
network request, the rewritten version checks to determine if the re-
quest should be automatically allowed, denied, or if the user should
be asked to decide. If the user is asked, the rewritten app presents
a dialog box to the user asking whether to allow or deny the given
request. If the network request is attempted in a background thread,
the background thread is blocked until the user responds to the dia-
log window presented in the Ul thread. If any request is denied (ei-
ther automatically by policy, or by user decision) then our handler
throws an appropriate exception (e.g. java.io.IOException), or
returns null if the target method would not normally throw an ex-
ception. Rewritten apps also log all network access attempts to An-
droid’s built-in logging system logcat, along with the allow/deny
decisions made for each request.

We also intercept network requests made via reflection (see Sec-
tion 3.1}, and prevent unauthorized network access by prompting
the user for permission before executing any native or unexamined
code (as described in Sections[3.2]and 3.3)).

Support Methods We use the mechanisms described in Sec-
tion B.4] to present the user with a dialog box when needed to re-
quest permission for network requests and the execution of native
and dynamically loaded code. To notify the user of requests that
were automatically allowed or denied, we display a message via
Toast message (simple, brief, noninteractive popup message).

4.2 HTTPS-Everywhere

Many popular web services support both HTTP and HTTPS con-
nections. Unfortunately, many of these services, and apps that use
these services, default to the HTTP version of these sites. This
can leave users vulnerable to sniffing, session-hijacking attacks like
Firesheep [9]], SSL-stripping and other attacks.

The HTTPS-Everywhere [12] project provides browser exten-
sions that rewrite HTTP web URLs to HTTPS alternatives for many
popular services. Often the URL rewriting involves more than sim-
ply changing the protocol to https. For example, some sites serve
static content from Amazon’s S3 storage service. While original
domain may only serve content via HTTP, the same content can
be retrieved via HTTPS from the Amazon S3 servers. The HTTPS-
Everywhere contributors maintain a set of manually-specified rewrit-
ing rules for many major websites that map resources offered over
HTTP to known HTTPS alternatives.

HTTPS-Everywhere is implemented in a browser context where
there are well-defined extension systems capable of rewriting URLs.
However, this does not help Android apps that make requests di-
rectly to these web services, and to our knowledge no such feature
is available for Android apps. Researchers such as Fahl et al. [16]
show that many Android apps fail to use HTTPS even when it is
available. We can use our rewriting system to produce apps that
use the HTTPS version of URLs when available using the URL-
rewriting rules from the HTTPS-Everywhere project.

Target Method Handlers We have ported popular URL-rewriting
rules from the HTTPS-Everywhere project into support methods
we add to rewritten apps. We created a transformation policy that
intercepts many platform methods for creating network connec-
tions to a URL. In the handlers for these network API methods,
we replace (at runtime) the destination with the HTTPS alternative
when we have an applicable HTTPS-Everywhere rule.

4.3 User Notification of Background Activity

We can write transformation policies that make use of our deep
integration with the rewritten app. We have written a transforma-
tion policy designed to inform users of background network re-
quests by augmenting the app Ul itself.

Target Methods Handlers In this transformation policy, when
we intercept a network request we update the count of requests
and display the new total in the title of the current Activity on the
screen. We use the network target methods from the fine-grained
access control policy and keep track of the current Activity using
the mechanism described in Section 3.4l After updating the total,
our handler methods create a new Runnable task to execute in the
main thread and update the app UL

4.4 Automatic App Localization

Our rewriting system can also be used to perform some forms of
localization and internationalization automatically. We have cre-
ated a policy that rewrites apps to translate text in app UI widgets
via an online web translation service.

Target Methods This transformation policy targets the setText
and similar methods in some common Android UI classes, includ-
ing TextView, Button, CheckBox. We intercept setText API
calls that take strings as well as string asset resource identifiers.
We pass the specified string, looking up the string resource if re-
quired, to our translation code in our method handlers. One benefit
of our approach, as opposed to simply translating all strings found
within an Android app, is that our rewritten apps will also translate
content generated dynamically, or retrieved from external sources
such as the network.

Method Handlers Whenever the original app would normally
set the text in one of these widgets, we intercept these calls and
translate the text via a web-based translation service, updating the
widget with the translated text. Apps usually set the text in Ul
widgets from within the Android UI (main) thread, so rewritten
apps will invoke our handlers in the UI thread. Regular setText
calls finish quickly, but delaying the UI thread while translating
each string via network request would impact the responsiveness
of the app. Our system allows us to specify handlers that handle
this gracefully.

Asynchronous Design In order to maintain UI responsiveness,
our handlers return immediately after creating a new background
task to perform the translation. After receiving the translation from
the web service, this background task updates the widget with the
new text asynchronously, queuing the update task to run back in
the UI thread. This means that the app will remain responsive to
user and other events while the translation occurs, and the UI will
be updated asynchronously as translation results are received.

Our current implementation performs the translation using a sim-
ple web service we have created to test our functionality, though
the handlers could be updated to function with an existing provider
such as Google or Bing. Of course, the translations will only be
as good as can be provided by the translation service. We note
that when applying a transformation policy that includes network
requests, the rewritten app must include the Android INTERNET
permission, so this permission must be added if it is not already
included in the original manifest.

4.5 Auto-Patching Apps

Our rewriting system can also be used to automatically update
apps to run on an updated or different environment. For example,
we can write a transformation policy that replaces calls to one API
with another. To demonstrate this capability, we created a simple
policy that replaces calls to some of the Wallpaper API deprecated
in Android version 2.0 to the equivalent functionality provided by
the new WallpaperManager. We applied this policy to apps written
for the old API and observed that the rewritten apps used the new
APIL. Our system makes it very easy to write these simple policies
and have confidence that the target methods will be intercepted, no
matter whether the methods are invoked directly or via reflection.

5. EVALUATION

5.1 Evaluation Set Selection

We evaluated the feasibility of our rewriting system for use with
real-world apps by testing with randomly selected apps downloaded
from Google Play. We have an automated system that crawls and
downloads free apps from Google Play, and we selected our apps
for evaluation from this set. Some apps available on Google Play
fail to install or run, or require specific hardware, so to ensure we
would have at least one thousand working apps in our evaluation set
we first selected 1200 apps at random. We then discarded apps that
were invalid, incompatible or otherwise failed to install or launch

Policy Total Failure Success
Apps | # % # %
Network 1119 | 27 | 2.4% | 1092 | 97.6%
Notify 1119 | O 0% 1119 | 100%
HTTPS 1119 | 0 0% 1119 | 100%
Localization || 1119 | 0 0% 1119 | 100%

Table 1: Successfully rewritten apps

on an Android emulator running Android version 4.2. This left us
with 1119 apps for our evaluation set. Upon examination we found
that of these 1119 apps, only 49 (less than 4.4%) contain native
code.

5.2 Rewriting Real-World Apps

We rewrote and tested each of the 1119 apps four different times:
once for each of the four general transformation policies described
in Section 4l While we confirmed the functionality of our Wallpa-
per API replacement transformation policy on a few apps known
to use the deprecated API, this API was not commonly used in our
set of apps so we do not further explore its application here. In this
section, we abbreviate the names of the four general transformation
policies as follows:

e Network: fine-grained network access control

e HTTPS: apply HTTPS-Everywhere rules to replace http re-
quests with https equivalents when possible

o Notify: display background network activity in app
e Localization: translate Ul widget content via web service

5.2.1 Rewriting Evaluation

We applied each of our four general sample transformation poli-
cies to all of these apps to produce four sets of rewritten apps. Ta-
ble [l includes the number of apps that were successfully rewritten
when applying each transformation policy. Success at this stage
means that the support and handler methods were able to be com-
piled and integrated into the new app, producing a complete, instal-
lable Android Package file (APK).

The Notify, HTTPS, and Localization policies were successfully
applied to all apps. The only issues detected in the rewriting stage
were when applying the network transformation policy to apps that
included native code. Because our network policy is designed to
prevent any unauthorized network request, applying this policy au-
tomatically adds target methods for each native method in the app.
When compiling the handler methods our system generates skele-
ton classes for the necessary developer classes, as described in Sec-
tion[2:3l All of the errors in rewriting occur because the target app
containing native methods has been obfuscated so that the class and
package names in the app are no longer valid Java identifiers (e.g.
naming collisions between package and class names). We detect
this error and halt the rewriting process, rather than producing a
rewritten app that we cannot guarantee has captured all app-specific
native methods.

In theory we could detect and resolve these collisions and rewrite
our handler code after compilation to match the names used in the
rewritten app. We have not yet implemented this feature as it is only
necessary when rewriting apps obfuscated in this way with policies
that augment the target method list with developer methods. In our
evaluation set occurs rarely (2.4% of apps), so we simply detect
this case so our system will not produce apps that appear complete
but have not been completely rewritten.

Policy Total Failure Success
Apps | # % # %
Network 1092 | 6 | 0.5% | 1086 | 99.5%
Notify 1119 | 7 | 0.6% | 1112 | 99.4%
HTTPS 1119 | 76 | 6.8% | 1043 | 93.2%
Localization || 1119 | 4 | 0.4% | 1115 | 99.6%

Table 2: Rewritten apps that successfully verify and run

5.2.2 App Usage Evaluation

We ran each rewritten app in the Android emulator and manually
verified whether rewritten apps pass the bytecode verification stage,
launch and begin to execute as expected. We ran each app using the
Android monkeyrunner tool and took a screenshot of the running
app. In this test, “success” means that the app passed the bytecode
verification and ran without crashing, which we confirmed by ex-
amining the system and application logs and the screenshot of the
running app. While we do not attempt to achieve full code cov-
erage, during testing each successfully rewritten app executed at
least one of our added handler methods. General techniques for au-
tomatically verifying the behavior of Android apps is an open and
difficult problem [23] and may depend on the desired outcome of
rewriting. For example, should blocking network access in an app
that requires be considered “breaking” the app?

The Network, Notify and Localization policies each had a suc-
cess rate of over 99%, and the HTTPS policy had a success rate of
over 93%. The exact results for each policy can be found in Table 2l

The majority (82%) of the failures occur when Android performs
the bytecode verification across the entire app at launch and detects
the issue described in Section 23,1l when multiple registers in the
same method reference the same uninitialized object and a target
constructor is invoked on one of these registers. The Android ver-
ifier detects this condition in the bytecode before running the ap-
plication, preventing the rewritten applications with uninitialized
registers from executing. It would be possible to perform the same
bytecode checks as the verifier at rewrite time and handle this con-
dition by updating both register references, though we have not yet
implemented this functionality.

In our evaluation set we observed that the HTTPS policy has
the highest failure rate due to its many, frequently-used construc-
tors in the list of target methods. The Network, Notify and Local-
ization policies perform better in our tests as they intercept fewer
frequently-used constructors, with mostly non-constructor target
methods. For example, these policies intercept the openStream
method rather than the java.net.URL constructor.

The remaining (18%) run failures came from issues involving
the application of our transformation policies on apps with unusual
characteristics. For example, our localization policy creates a new
background thread for each new translation task. While this makes
the transformation policy simple to write, apps that attempt to set a
large number of widgets at once may cause our rewritten apps to hit
the thread pool limit. In our tests our sample policies work well in
most cases, and their designs could be made more robust to further
improve the success rate.

5.2.3 Transformation Policy Evaluation

In addition to evaluating the rewriting and execution of each app,
we also manually verified the functionality of the transformation
policies in the rewritten apps.

Network For the network policy, we observed the interception
of network requests, dialog boxes presented to the user, and policy
decisions applied to network requests.

| Policy | Original Size | Mean Increase |
Network 515.3 KiB 38.9KiB | 7.54%
Notify 526.3 KiB 30.8 KiB | 5.85%
HTTPS 526.3 KiB 29.6 KiB | 5.62%
Localization 526.3 KiB 19.6 KiB | 3.72%

Table 3: Mean impact on uncompressed classes.dex

Notify For the policy notifying the user of background network
requests we ran and confirmed the integration and display of this
information in the title bar of the current Activity.

HTTPS In our policy we include the URL-rewriting rules from
the HTTPS-Everywhere project for several popular sites, including
AdMob, Blogger, Google App Engine, Foursquare, Doubleclick,
Reddit and related domains. We confirmed the rewriting of http
network destinations to https requests via tcpdump when running
the apps in the emulator. We transformed http requests to associated
https requests in 226 apps (20.2%).

Localization To simplify testing and avoid being tied to any par-
ticular provider, we created a simple web service with a to simu-
late an online translation service. This service receives a string via
POST message and returns a translated string. In deployment sit-
uations this could pass the string to a web translation service such
as those provided by Google or Bing. However, for testing our
service returns the string with sentinel prefix and suffix values for
easy identification in rewritten apps. We observed our transformed
strings in the expected widgets in the rewritten apps, and confirmed
the operation of our transformation policy by logging the requests
made to our web service.

5.2.4 Impact on App Code Size

We add our handler code as separate methods, rather than in-
jecting our custom behavior inline at every point the original ap-
plication invoked a target method. This means that even if our
handlers are complex and large, they are only included in the app
once. Whenever the original app invokes a target method, we re-
place this single instruction with only one or two instructions to
invoke our handler instead (depending on the invocation type). So,
the app code increases linearly with the number of handlers in the
policy rather than with the number of times an app invokes a target
method.

Android apps are packaged in APK files, which contain all of
the bytecode and assets for the application. Inside this compressed
archive, the classes.dex file contains all of the Dalvik bytecode
for the application. We measure the impact of the policies de-
scribed in this paper on the size of an app by measuring the size
increase of the uncompressed classes.dex file. We note that the
classes.dex file is compressed in the rewritten APK, further min-
imizing the impact of our added code.

Table [3] lists the mean size of the classes.dex file when ex-
tracted from the original (compressed) APKs, and the sizes of the
new classes.dex files after rewriting but before recompression.
Our system successfully applied the Network policy to only 97.6%
of the apps, so we compare the sizes of the rewritten classes.dex
files only to those in apps that were successfully rewritten. The
bytecode added scales linearly with the number of target methods
specified in the policy and the sizes of the method handlers. This
means that a policy that has little variance in the number of target
methods specified or handler sizes will add approximately the same
amount of bytecode to each app.

Table [lists the size analysis on the complete APKs produced
by our rewriting system. These APKs are the actual files that are

| Policy | Original Size | Mean Increase |
Network 1915.4 KiB 11.03 KiB | 0.58%
Notify 1987.1 KiB 9.19KiB | 0.46%
HTTPS 1987.1 KiB 9.66 KiB | 0.49%
Localization 1987.1 KiB 7.09KiB | 0.36%

Table 4: Overall impact on APK size (compared to mean size
of recompressed original APKs)

deployed to Android devices. We discovered that because several
APKs in our evaluation set had been poorly compressed, our sys-
tem actually produced some rewritten APKs that were smaller than
their originals. To discount the effect of different compressions,
Table [compares the sizes of APKs before and after rewriting both
of which were compressed in the same way by us. As in Table 3]
we compare our rewritten APKs only to those in the original set
that were successfully rewritten.

5.3 App Performance

The impact of our modifications of the performance of a rewrit-
ten app depends greatly on the behavior of the handler methods.
However, the only overhead required by our design is the addition
of one new method call for each target method invocation in the
original app. In [11] we describe our method interception strategy
in more detail and perform a microbenchmark test to measure the
overhead of adding an additional method invocation for each target
method call. We applied a very simple transformation policy that
intercepts the StringBuilder->append method, with a handler
that only invokes the original method, to an app we created that
performs one million appends. We ran the original and rewritten
versions of the app on a HTC Thunderbolt phone running Android
2.3.4. We measured the run time of each and in this test executing
our method handler for each target method invocation adds an aver-
age of less than 0.2 microseconds per call. Due to the minor impact
on resource usage, this overhead is also unlikely to make a measur-
able impact on power consumption on the device. Rewritten apps
only pay this performance penalty when executing a target method,
as the remainder of the app code is left unmodified.

While the inherent overhead of our method interception is low,
the overall impact on app performance depends on the function-
ality of the handler methods and the target methods intercepted.
The overhead added by many of our handlers is marginal relative
to the original target method call (e.g. logging a network request
method). When more time-consuming handlers are required, our
deep integration into the app allows for sophisticated policies that
minimize the impact on app performance (e.g. our localization pol-
icy translates Ul text in background threads and updates the UI
asynchronously). In general, well-written method handlers will not
impact the app performance more than if the original app had im-
plemented the desired behavior. Policy writers can weigh the per-
formance impact against the value of the added functionality.

5.4 Rewriting Speed

Apps can be rewritten quickly on a normal desktop PC. On aver-
age, a normal desktop machine with a 2.66 GHz Intel Core 2 Quad
CPU (Q9450) with 4 GB of RAM and a single 7200 RPM hard
disk our system can rewrite an apk in less than 5 seconds. This is
the time required for the entire end-to-end rewriting process, which
includes disassembling the original app, analyzing the contents of
the target app, generating the Java source for all target method han-
dlers, compiling the handler code, rewriting the app bytecode and
merging in the handler code, reassembling and signing the rewritten

app. The bytecode rewriting is performed in a single pass, which
scales linearly with the size of the app bytecode.

6. DISCUSSION

6.1 Transformation Policy Development

While users may develop transformation policies themselves, it
seems more likely that most users will use community developed,
vetted, and maintained policies, much in the way that communities
have evolved to produce and maintain policies for Adblock Plus [1],
NoScript [6], HTTPS-Everywhere [12], and similar security-focused
browser extensions. Policy writers can use static and dynamic tech-
niques to analyze the Android platform (such as those described in
by Felt et al. [17]) to ensure proper coverage of functionality across
the Android platform.

Our system only requires handler methods to declare the same
checked exceptions and return type as the target methods, leaving
policy writers with the power to modify the state and operation of
the app in dramatic ways. This allows for powerful transforma-
tions to app behavior, but policy writers must carefully consider
the effects of their modifications. It is possible for transformation
policies to change the internal state of an app in ways the app does
not expect or handle gracefully (e.g. by throwing an unexpected
runtime exception). We leave it to the policy writers and users of
the rewriting system to decide what changes to app behavior are
appropriate and necessary to achieve their rewriting goals.

6.2 Transformation Policy Application

Our system could be deployed in a number of ways. Users may
download Android apps and run the rewriting tools themselves to
produce a new app to install on their device. Alternatively, this
rewriting system may be provided as part of an online service that
rewrites Android apps on the fly as requested by a user. Corporate
environments may rewrite apps before allowing installation on a
device (e.g. via a proxy as apps are downloaded to the device, or
by providing a private “market” of rewritten apps).

Imagine an enterprise that requires all apps to be rewritten be-
fore installed on a corporate device. This rewriting process could
allow the enterprise to mitigate the risk of installing apps developed
by untrusted third parties. This enterprise could provide a trusted
rewriting service that applies a trusted transformation policy to any
arbitrary app requested by a user. This trusted policy can be ap-
plied to many apps, so it seems more feasible for an enterprise to
maintain a single trusted transformation policy than to develop all
of the apps that users desire.

Android apps include a digital signature from the developer over
the contents of the app. Of course, because rewriting the app changes
the content, the original signature will not be valid for the rewritten
version of the app. The rewriting system can generate a new sig-
nature for the rewritten app. In this way, users can verify that the
rewritten app was created by a trusted rewriting service and was
delivered by without tampering.

Rewriting requires just a few seconds on a normal desktop PC,
which is fast enough to support on-line rewriting before installation
on users devices. While our current rewriting system runs on tradi-
tional PCs, it may be possible to perform the rewriting entirely on
the Android device itself.

6.3 Advanced Policies

Except when replacing calls to parent classes in wedged classes,
our current policies replace each target method with the same han-
dler globally. However, it is possible for us to use our system to dif-
ferentiate method calls by call site. For example, given the ability to

identify ad libraries in apps, either by package name or class prop-
erties, we could rewrite apps to block all network requests made
from an ad library and allow all network requests made from the
rest of the app. This functionality cannot be provided by solutions
lacking the deep app integration provided by our rewriting system
(e.g. an ad-blocking proxy cannot distinguish between requests
made from ad vs. app code). The blocking of ad requests could
be performed as in our fine-grained network access control policy,
as well-written ad libraries should gracefully handle what it sees as
a failed network request. We leave the exploration of policies that
distinguish based on call site to future work.

6.4 Legal and Ethical Discussion

We designed RetroSkeleton to be a powerful tool to enable flexi-
ble rewriting of apps. Like many other tools, RetroSkeleton may be
used for a variety of purposes. While many uses benefit app mar-
kets, developers, and users, some may not. The legality of reverse
engineering, modifying, and redistributing apps depends on the ju-
risdiction and contract (e.g., EULA) of the involved parties. Tech-
nically savvy users could disassemble, modify, and repackage An-
droid apps without RetroSkeleton, so all the operations performed
by RetroSkeleton could be applied manually when RetroSkeleton
is unavailable. Furthermore, many effects of RetroSkeleton can
also be achieved by other means, such as blocking network requests
with a proxy instead of the Fine-Grained Network Access Control
policy described in Section .1}

Currently, even markets that vet apps before admission make
only a binary decision between accepting or rejecting an app. Mar-
kets could improve by using automated app rewriting to enforce
policies on submitted apps, thus acquiring an additional level of
control over the quality of the apps that they distribute to their
users. Developers may benefit if app rewriting adds functionality
that their users desire without having to implement those features
themselves, or in ways that their users find more trustworthy. Users
may be more likely to install an app if it has been rewritten using
a policy provided by a trusted party to give them additional control
or guarantees about its behavior.

On the downside, rewritten apps may restrict behavior that de-
velopers or ad providers depend on for revenue (e.g. delivering
targeted advertisements). As a result, developers may refuse to dis-
tribute their apps on markets that rewrite apps. Users of rewritten
apps may not know if undesirable behavior in apps results from
rewriting.

While developers may not bypass the interception mechanisms
of RetroSkeleton, they are free to detect modifications and change
the behavior of their apps (e.g., refusing to run) when rewritten.
‘We make no attempt to hide our modifications from rewritten apps
(Section [[.TD. Developers can easily check if their apps have been
rewritten, e.g. by comparing a checksum of the code with the ex-
pected value. Also rewritten apps are signed by the rewriter, rather
than the original developer.

7. RELATED WORK
7.1 Modifying the Android Platform

Android includes a permission system that limits apps to cat-
egories of functionality declared at install time. Android apps de-
clare the coarse-grained categories of functionality they wish to use
in their application manifest. If the user installs the app, the app is
granted unlimited access to all data and functionality requested in
the manifest. These permissions are very coarse-grained (e.g. a
single “INTERNET” permission for network access), and once in-

stalled, the user cannot control or constrain what the app does with
the granted permissions.

Finding the Android permission system lacking, many researchers
modified the open-source Android platform to develop custom builds
of Android [19} 29 22| [8]. Many of these, such as Apex [22] and
TISSA [29], are designed to improve the security and privacy con-
trols on Android, modeled around the permission-based methods.
While the Android platform is open source, many drivers for hard-
ware support are not, and installing custom Android builds may
require rooting the device, voiding the warranty, and/or violating
the carrier’s terms of service. This makes it infeasible for most nor-
mal users to update or modify the firmware or platform to provide
additional controls or functionality.

It is also difficult for these custom builds to keep up with new
versions to the Android platform, and to support all hardware de-
vices, as open-source versions of device drivers may not be avail-
able. In contrast, using our system rewritten apps may be de-
ployed to any stock Android device. In addition to these deploy-
ment issues, policies integrated into the platform are far less flexi-
ble than our app-specific approach. It is relatively difficult to extend
platform-based policies to add new capabilities, and policies in the
platform will apply to all apps on the device. Our approach can ap-
ply different policies to different apps, and we can easily add and
apply new policies at any point.

7.2 Rewriting Android Apps

Jeon et al. [21]] developed a system to provide finer-grained per-
missions for Android. Their work is based on a specialized re-
placement for some privacy-sensitive APIs and use Dalvik byte-
code rewriting to modify apps to use their replacement API. Their
replacement APIs fulfill the requests using inter-process commu-
nication to shuttle the request to an independent service, also in-
stalled and running on the device, which contains all permissions.
Their approach shares many advantages with ours, in that it re-
quires no modifications to the underlying Android platform. While
their goals are focused on providing these fine-grained permission
methods, our work is a more general system capable of replacing
any methods of interest with any other custom behavior. We pro-
vide a new policy language for high-level app-agnostic transforma-
tion policies as well as the analysis and rewriting infrastructure to
apply them without manual guidance. We believe our system could
be used to implement their approach by targeting the same API
calls and providing handlers that perform the inter-process com-
munication to their separate service. Of course, our system is flex-
ible enough to also support other kinds of policies, such as those in
Section M] that embed new behavior into the app itself and do not
require inter-process communication to handle intercepted calls.

Other researchers have used app rewriting for even more special-
ized transformations. Reynaud et al. [24]] discovered vulnerabilities
in Google In-App Billing by rewriting applications that communi-
cated with the Google Market app to bind to their own fake Market
app instead. We believe that RetroSkeleton is general and flexible
enough for future researchers to use to perform these interesting
investigations without having to develop independent, specialized
rewriting systems.

7.3 Alternate Android Approaches

Xu et al. [27] have developed Aurasium, which provides refer-
ence monitor capabilities by repackaging Android apps to use a
custom version of libc. Their system can enforce security policies
by interposing on low-level system calls, and performing their se-
curity checks from within the replaced libc call. In contrast, our
approach allows policy writers to specify what they want to inter-

cept at the method call level, rather than requiring knowledge of
how these operations manifest themselves as low-level libc calls.
Furthermore, policy writers specify the new behavior they wish to
add as Java code that operates on the Java objects passed to their
target method, rather than on the low-level data available within
libc functions. Aurasium is designed for reference-monitor capa-
bilities, and we can achieve similar results by intercepting calls
to sensitive methods, such as those that require the “INTERNET”
permission. However, RetroSkeleton can be used for many other
ways, such as app Ul augmentation or behavior modification like
our auto-localization functionality, which would be far more diffi-
cult to achieve from within a replaced libc.

Adblock Plus for Android [2] has recently been released and pro-
vides a mechanism for blocking many ads from being retrieved by
Android apps. Adblock Plus for Android works by installing an
Android service on the device that runs a local proxy server in the
background at all times. Then the Android device is configured to
use the Adblock Plus local proxy server as the proxy for network
connections. This local proxy server blocks requests to known ad
services. Our rewriting system may be used to similarly provide
ad blocking capabilities, with a number of advantages. First, we
can apply different ad-blocking policies for each app, while the
Adblock Plus proxy cannot distinguish between call sites. We can
rewrite and redistribute apps without Adblock Plus’s requirements
of a system with manual proxy-specification support (Android 3.1
or newer, custom Android build or a rooted device). Rewritten apps
also would not require a proxy service running in the background
consuming resources as we can integrate the blocking decisions
into the new app. We may be able to provide more advanced block-
ing, such as blocking network requests from ad libraries but per-
mitting requests made from within the main app, as discussed in
Section[6.3]

7.4 Java-based Approaches

While Dalvik bytecode differs from Java bytecode, Dalvik byte-
code is created from Java. As a result, tools such as ded [[13]] and
dex2jar [4] have been created to convert Dalvik bytecode into Java
bytecode. This approach allows for the use of Java-based analysis
tools such as WALA [7] on the resulting Java bytecode. This con-
version is nontrivial and frequently produces code that can not be
assembled back into a functional Android app, as reported in [24].
While this does not matter for pure analysis-based studies, our goal
is to produce valid Android apps after rewriting so we operate on
the Dalvik bytecode without conversion.

While the Dalvik and Java virtual machines differ in many ways
(e.g. register-based instead of stack-based), some techniques used
to rewrite Java bytecode apply to our approach to Dalvik rewriting.
Java bytecode instrumentation by Chander et al. [10] involves in-
vocation and class substitution to produce modified Java programs.
While our rewriting system works on Dalvik rather than Java byte-
code, our stub and wedge class approach for low-level method in-
terception is similar to their Java-based system with respect to the
class hierarchy of the rewritten software. RetroSkeleton uses this
low-level mechanism to perform aspects of the method intercep-
tion, and provides a new high-level abstraction that allows policy
writers to create policies that can be applied to any app. Without
a system automating this work, rewriters must identify and create
new and different wedge classes for each rewritten app, depend-
ing on the classes used and defined by the original app developer.
RetroSkeleton analyzes the app and target methods in the policy to
automatically generate the appropriate stub and wedge classes with
the necessary properties, and modifies the app class hierarchy as
needed. This automated analysis and generation is critical for real-

world use given the tremendous number and variety of Android
apps available.

Rudys and Wallach [25] apply many of these ideas to develop
a more complete reference monitor capable of preventing infinite
loops and providing transactional rollback to revert changes made
in an aborted operation. While our goals are different, their work
demonstrates the power and flexibility of bytecode rewriting to pro-
vide advanced functionality to existing apps.

Erlingsson and Schneider used inline reference monitors (IRM)
for enforcing security properties in Java applications [15]]. The Java
IRM design detailed in [14] highlights the many benefits of inte-
grating code into the target application itself, such as easier obser-
vation of the internal state of the application. Because our approach
embeds all changes entirely into the rewritten apps, our system pro-
vides these same benefits to policy writers. Because RetroSkeleton
can interpose on method calls of interest, it can be used to embed
reference monitor functionality into Android apps, but this is only
one potential application of our system. Our system allows policy
writers to just as easily write policies that add functionality other
than security checks, such as adding new UI behavior.

8. CONCLUSION

In this paper, we have presented the design and implementation
of a flexible Android app rewriting framework. This framework
leverages the relatively uniform way that Android apps are imple-
mented to provide users with the capability to apply powerful and
complex policies to arbitrary apps without any app-specific guid-
ance. Our system rewrites apps to insert, remove and modify app
behavior, producing rewritten apps that can be deployed to stock
Android devices.

We have demonstrated the power of this approach by implement-
ing policies including fine-grained network access control, HTTPS-
Everywhere-like capabilities, informing users of hidden app behav-
ior, and automated Ul-element localization. We applied these poli-
cies to more than one thousand real-world apps from Google Play
with a more than 93% success rate for all policies.

9. ACKNOWLEDGMENTS

This paper is based upon work supported by the National Science
Foundation under Grant No. 1018964.

10. REFERENCES

[1] Adblock Plus. http://adblockplus.org. Accessed:
2012/12/10.

[2] Adblock Plus for Android. http://adblockplus.org/en/
android-about. Accessed: 2012/12/10.

[3] Clojure. http://clojure.org. Accessed: 2012/12/10.

[4] dex2jar: Tools to work with Android .dex and Java .class
files. http://code.google.com/p/dex2jar/. Accessed:
2012/12/10.

[5] Google Play. https://play.google.com/store.
Accessed: 2012/12/10.

[6] NoScript Firefox Extension. http://noscript.net,
Accessed: 2012/12/10.

[7] T.J. Watson Libraries for Analysis (WALA). http://wala.
sourceforge.net, 2012. Accessed: 2012/12/10.

[8] A.R. Beresford, A. Rice, N. Skehin, and R. Sohan.
MockDroid: Trading Privacy for Application Functionality
on Smartphones. In HotMobile, 2011.

[9] E. Butler. Firesheep. http://codebutler.com/
firesheep/. Accessed: 2012/12/10.

http://adblockplus.org
http://adblockplus.org/en/android-about
http://adblockplus.org/en/android-about
http://clojure.org
http://code.google.com/p/dex2jar/
https://play.google.com/store
http://noscript.net
http://wala.sourceforge.net
http://wala.sourceforge.net
http://codebutler.com/firesheep/
http://codebutler.com/firesheep/

[10] A. Chander, J. Mitchell, and I. Shin. Mobile Code Security
by Java Bytecode Instrumentation. In DARPA Information
Survivability Conference & Exposition 11, 2001. DISCEX’01.
Proceedings, volume 2, pages 27-40. IEEE, 2001.

[11] B. Davis, B. Sanders, A. Khodaverdian, and H. Chen.
I-ARM-Droid: A Rewriting Framework for In-App
Reference Monitors for Android Applications. In /EEE
Mobile Security Technologies (MoST), May 2012.

[12] EFE. HTTPS-Everywhere. https://wuw.eff.org/
https-everywhere/. Accessed: 2012/12/10.

[13] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A
Study of Android Application Security. In Proceedings of
the 20th USENIX Security Symposium, August 2011.

[14] U. Erlingsson. The Inlined Reference Monitor Approach to
Security Policy Enforcement. PhD thesis, Cornell University,
2003.

[15] U. Erlingsson and F. Schneider. IRM Enforcement of Java
Stack Inspection. In Security and Privacy, 2000. S P 2000.
Proceedings. 2000 IEEE Symposium on, pages 246 -255,
2000.

[16] S. Fahl, M. Harbach, T. Muders, L. Baumgirtner,

B. Freisleben, and M. Smith. Why Eve and Mallory Love
Android: An Analysis of Android SSL (In)Security. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS *12, pages 50-61. ACM,
2012.

[17] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
Permissions Demystified. In Proceedings of the 18th ACM
Conference on Computer and Communications Security,
pages 627-638. ACM, 2011.

[18] B. Gruver. smali: An Assembler/Disassembler for Android’s
dex Format. https://code.google.com/p/smali/.
Accessed: 2012/12/10.

[19] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These Aren’t the Droids You’re Looking For: Retrofitting
Android to Protect Data from Imperious Applications. In
Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS *11, pages 639-652. ACM,
2011.

[20] IDC. International Data Corporation Worldwide Quarterly

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Mobile Phone Tracker. http://www.idc.com/getdoc.
jsp?containerId=prUS23638712. Accessed: 2012/12/10.
J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy,
J. S. Foster, and T. Millstein. Dr. Android and Mr. Hide:
Fine-Grained Permissions in Android Applications. In
Proceedings of the Second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM 12,
pages 3-14. ACM, 2012.

M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model and Enforcement with
User-Defined Runtime Constraints. In Proceedings of the 5th
ACM Symposium on Information, Computer and
Communications Security, pages 328-332. ACM, 2010.

V. Rastogi, Y. Chen, and W. Enck. AppsPlayground:
Automatic Security Analysis of Smartphone Applications. In
Proceedings of the Third ACM Conference on Data and
Application Security and Privacy, CODASPY ’13, pages
209-220, New York, NY, USA, 2013. ACM.

D. Reynaud, D. Song, T. Magrino, and R. S. Edward Wu.
FreeMarket: Shopping for Free in Android Applications. In
Proceedings of the 19th Annual Network & Distributed
System Security Symposium, Feb. 2012.

A. Rudys and D. Wallach. Enforcing Java Run-Time
Properties Using Bytecode Rewriting. Software Security
Theories and Systems, pages 271-276, 2003.

B. Womack. Google Says 700,000 Applications Available
for Android. http://buswk.co/PDb2tm. Accessed:
2012/12/10.

R. Xu, H. Saidi, and R. Anderson. Aurasium: Practical
Policy Enforcement for Android Applications. In
Proceedings of the 21st USENIX Conference on Security
Symposium, Security’ 12, pages 27-27. USENIX
Association, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off
of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets. In Proceedings of the 19th
Annual Network & Distributed System Security Symposium,
Feb. 2012.

Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Taming
Information-Stealing Smartphone Applications (on Android).
Trust and Trustworthy Computing, pages 93-107, 2011.

https://www.eff.org/https-everywhere/
https://www.eff.org/https-everywhere/
https://code.google.com/p/smali/
http://www.idc.com/getdoc.jsp?containerId=prUS23638712
http://www.idc.com/getdoc.jsp?containerId=prUS23638712
http://buswk.co/PDb2tm

	Introduction
	Threat Model
	Contributions

	Design
	Approach: Method Interception
	Identifying Method Invocations
	Method Handler Design
	Stub Methods
	Wedge Classes
	Use of Stub Methods and Wedge Classes

	Method Handler Behavior
	Generating Support Code
	Transformation Policy Design

	Challenges
	Reflection
	Native Code
	Intercepting Unexamined Code
	Integration with App UI

	Applications of Rewriting
	Fine-Grained Network Access Control
	HTTPS-Everywhere
	User Notification of Background Activity
	Automatic App Localization
	Auto-Patching Apps

	Evaluation
	Evaluation Set Selection
	Rewriting Real-World Apps
	Rewriting Evaluation
	App Usage Evaluation
	Transformation Policy Evaluation
	Impact on App Code Size

	App Performance
	Rewriting Speed

	Discussion
	Transformation Policy Development
	Transformation Policy Application
	Advanced Policies
	Legal and Ethical Discussion

	Related Work
	Modifying the Android Platform
	Rewriting Android Apps
	Alternate Android Approaches
	Java-based Approaches

	Conclusion
	Acknowledgments
	References

