
DBTaint: Cross-Application Information Flow Tracking via Databases
Benjamin Davis, Hao Chen (University of California, Davis)

Database
Interface

Web App

Database

DBTaint

1

4

 2

3

Motivation
As we become more reliant on Web services, these services become more
attractive targets to attackers. Tracking the flow of “tainted” (untrusted) data
through a system is a proven method of detecting vulnerabilities and preventing
many types of attacks. Unfortunately, most existing information flow tracking
systems are a poor fit for the multi-application architecture of modern Web
services.

The Problem
Many existing information flow system can only track tainted data through a single
application. However, most Web services include at least one Web application
and one database application. Single-application systems lose taint information at
the application boundaries, leaving users with imperfect options including:
•Consider all data from databases tainted
•Consider all data from databases untainted
•Manual annotation
•Application-specific decisions or specialized environments

Many system-wide information flow tracking systems are too coarsely grained
(operating at the process or file level), while fine-grained systems that operate at
the instruction level lack the ability to make use of high-level database semantics.

DBTaint provides
•End-to-end information flow tracking through Web services, across Web
applications and databases
•Mechanisms for leveraging single-application information flow systems in multi-
application Web services
•Information flow tracking in existing Web services, requiring no changes to Web
applications
•Taint propagation through database functions

Use Cases
•Persistent cross-application information flow tracking
•Regression testing, bug detection
•Identification of incomplete sanitization policies via column analysis

Implementation
Supports:
•Perl applications
•Perl DataBase Interface (DBI) API
•Java applications
•Java Database Connectivity (JDBC) API
•PostgreSQL Database

Evaluation

Storing Taint Values
DBTaint stores taint values
alongside data values using
composite types, which are
tuples of the form:
(<data value>, <taint value>)

This approach allows DBTaint to
use SQL to access and
manipulate taint values in the
database portably, requiring no
changes to the database engine.

0 5 10 15 20 25 30

JForum

RT

requests/second

Original

DBTaint

Processing Query Results
The DBTaint modifications in the database interface take
the composite results from a database query and
collapse them into appropriately tainted values before
returning them to the Web application.

No Changes to the
Web Application

By operating completely in the
Database Interface, DBTaint
requires no changes to the Web
application.

Single-Application Information
Flow System

DBTaint enables us to leverage existing single-application
information flow systems in a multi-application Web
service without losing taint data at the application
boundaries.

Propagating Taint in
Database Functions

We provide taint-propagating
versions of internal database
functions, including:
•Aggregate functions: MAX, MIN
•Comparison functions: =, <, !=, …
•Helper functions (for composite
types): getval(), gettaint()

Query Rewriting
To propagate taint information from the Web
application to the database, DBTaint rewrites SQL
queries to include taint values corresponding to the
query data values. Rewriting the SQL queries in the
database interface means that the augmentations made
to database tables to store taint values remain
transparent to the Web application.

RequestTracker (ticket tracking system)
•60,000+ lines of Perl
•Perl DBI (DataBase Interface) API
•Perl taint mode

JForum (discussion board system)
•30,000+ lines of Java
•Java Database Connectivity (JDBC) API
•Character-level taint engine [Chin ’09]

