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ABSTRACT
Over the past 20 years, a variety of automated software di-
versity techniques have been proposed. Some techniques
randomize aspects of the implementation that are left un-
defined by the source language specification, such as code
layout, stack layout, or locations of heap-allocated objects.
Others insert instrumentation or obfuscation that is trans-
parent from an application perspective, e.g. using XOR
masks to obscure data values in memory or hiding code
pointers using jump tables. A common assumption is that
layering these techniques improves security due to increased
entropy in the resulting binary. In this paper we examine
this assumption and show that it fails to hold in general. In
particular, it fails in one of the strongest deployment mod-
els for software diversity—that of multiple diverse variants
running together in a multi-variant execution environment
(MVEE) where attacks manifest as detectable behavioral
divergence. We present several examples of diversity com-
binations that are vulnerable to attack in an MVEE even
when none of the component techniques are vulnerable in
isolation. Based on these results, we present guidance on
which techniques do combine well and suggestions for effec-
tive deployment of diversity in MVEEs.

CCS Concepts
•Security and privacy→Vulnerability management; Soft-
ware security engineering; Intrusion/anomaly detection and
malware mitigation;
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A large portion of currently-deployed and newly-developed
applications are written in unsafe languages such as C and
C++. The memory safety violations that are possible in such
languages enable many of the attacks that now occur on a
regular basis.

A variety of mitigations have been proposed for these
problems; we distinguish between enforcement techniques
and those based on randomization. Enforcement is con-
cerned with preventing memory safety violations such as
out-of-bounds memory accesses [19], preventing control-flow
hijacking [1], or protecting code pointers [15]. These tech-
niques can provide absolute assurance against certain attack
techniques, but at the cost of increased execution overhead.

Randomization, often referred to as software diversity, in-
stead varies aspects of the code that are implementation-
defined, such as stack variable orderings or code layout.
Since there are many choices for these aspects of the imple-
mentation, randomizing compilers can easily generate many
program variants, all of which share any latent memory
safety weaknesses, but potentially differ in the degree of ex-
ploitability of those weaknesses (or perhaps even whether
exploitation is possible). An advantage of randomization is
that these changes typically have no significant performance
impact. A disadvantage is that the security guarantees are
probabilistic.

Multi-variant execution environments (MVEEs) run mul-
tiple variants of a program on the same inputs while mon-
itoring for differences in behavior. Exploitation of a pro-
gram in an MVEE thus requires eventual exploitation of all
variants. At first glance such a system appears to clearly
increase the security offered over what can be achieved with
randomization alone (e.g. a single randomized variant). It
might seem reasonable to assume that if N variants must be
exploited, and each variant has some probability P of being
exploitable, then perhaps the probabilities multiply and the
N -variant system has probability PN of being exploitable.

In this paper, we show that such an increase in security
is not necessarily guaranteed. In fact, careful choice of ran-
domization techniques is required to realize the benefit of
MVEEs. Our fundamental result is that diversity does not
compose in general. There are two axes along which compo-
sition results may be considered.



1. Composition of diversity techniques Is the com-
bination of technique A and technique B more secure
than either in isolation?

2. Composition of variants Is running four variants
in an MVEE more secure than running two? Is run-
ning two more secure than running a single variant in
isolation?

Our finding is that neither type of composition provides
for increased security in general. We demonstrate this by
describing several attacks on variants running in an MVEE.
We then provide suggestions for combinations of techniques
that do work well together in a multi-variant context and
minimize susceptibility to these attacks.

2. BACKGROUND
In the physical domain, we use a combination of obstacles,

hiding, and detection to counter unwanted behavior such as
theft. In the home, for example, we lock our front door,
hide our valuables, and use guards and sensors to detect
intruders. In the digital domain, we prevent exploitation
of vulnerable programs using a similar combination of ob-
stacles, hiding, and detection. Obstacles include X ⊕ W
policies which prevent runtime code injection and code sig-
natures which protect the integrity of programs on disk. We
hide the internals of potentially vulnerable programs (§ 2.1)
and use MVEE systems to add detection capabilities (§ 2.2).

2.1 Diversity
The compiler can translate source code to machine code in

a number of ways as long as it carries out the high level op-
erations specified by the programmer. Exploit payloads, on
the other hand, are so dependent on program internals that
even changing compiler flags can render the payload inert.
Artificial software diversity takes this idea one step further
by introducing new code transformations whose sole purpose
is to randomize the in-memory program representation, ef-
fectively hiding the attack surface from adversaries [16].

Diversity transformations target particular implementa-
tion aspects. If, for example, an exploit makes assumptions
about the layout of stack frames, defenders may randomize
the orders of buffers and scalars on the stack. Simiarly, ex-
ploits including a Return-Oriented Programming (ROP) [24]
stage become unreliable when diversity transformations are
used to randomize the code layout. Because deployment of
diversity techniques shifts the cost and feasibility of various
exploitation techniques, it is necessary to use multiple diver-
sity techniques (and integrity techniques) to raise the bar to
exploitation across the board.

At the highest level, diversity transformations target ei-
ther the code or the data layout of the program represen-
tation. Another key property is the granularity. Address
Space Layout Randomization (ASLR) is at the coarse end
of the spectrum because it randomizes the base address of
the .text section as well as the heap and stacks but doesn’t
randomize anything inside each section [21]. Medium-grain
code diversity techniques include those that randomly shuf-
fle code pages or functions (Figure 2) whereas the most fine-
grained techniques shuffle basic blocks or randomize individ-
ual instructions [10, 8, 29].

Data-oriented diversity transformations target the stack,
global and heap layouts or finer-grainer properties such as
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the layout of individual allocations or even the represen-
tation of data itself. The order in which variables are as-
signed stack frame slots, for instance, can be randomized,
and padding variables can be introduced to increase the
number of possible layouts (Figure 1). Similar techniques
can be used to randomize the layout of global variables.

The layout of the heap is chosen by the heap allocator at
run time, rather than by the compiler. This makes it natural
to randomize and pad heap objects dynamically as they are
allocated. To target use-after-free exploitation techniques,
heap diversifiers also delay and randomize memory deallo-
cation.

Cross-cutting, data-oriented transformations include data
randomization and structure layout randomization. Data
randomization i) uses static program analysis to divide all
legitimate data flows into a number of equivalence classes
and ii) assigns a random bitmask to each load and store op-
eration according to its equivalence class [3, 2]. This way, un-
intended, malicous data flows that cross equivalence classes
will be corrupted due to masking, while intended data flows
remain unaffected (see Figure 3). Structure layout random-
ization, as the name implies, shuffles and pads fields within
(non-packed) structures and classes [5, 17].

2.2 Multi-Variant Execution Environments
MVEEs execute two or more diversified programs (vari-

ants) in lockstep while monitoring their behavior at the level
of system calls. Execution is terminated if the MVEE de-
tects divergence. Because each diversified variant receives
the same program input but responds differently to memory
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corruption, adversaries must simultaneously and reliably ex-
ploit N program variants without causing them to diverge.

The MVEE must synchronize the variants and present
them as a single application to the end-user. To do so,
the MVEE monitor duplicates program inputs once for each
variant; variant outputs are similarly compared and dedu-
plicated such that each output operation is performed only
once. MVEEs monitor variants by interposing on the sys-
tem calls made by each variant. In other words, the monitor
gains control over a variant each time it makes a system call.
This lets the monitor decide whether to forward the system
call to the kernel and decide if and when variant execution
is resumed (Figure 4).

A variety of MVEE designs were explored in the past
decade. Although these designs have much in common, there
are some interesting features that distinguish them.

The majority of existing designs use a single, centralized,
monitor component that is placed outside the address spaces
of the variants. Some of these designs have a monitor that
runs in kernel space [7, 6], whereas others run the monitor as
a standalone user-space process that attaches to the variants
using the operating system’s debugging APIs [22, 28, 4, 18,
11].

More recently, several researchers proposed decentralized
designs, where a seperate monitor is used for each vari-
ant [12, 27, 14]. This monitor can then be placed into the
variants’ address spaces. Decentralized monitors communi-
cate through a shared memory region that is set up when
the monitors start. This shared memory region contains a
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Figure 5: Stack layout in three example variants.

ring buffer that is optimized to hold system call arguments
and return values.

At least two of the existing MVEEs offer the ability to
set up additional ring buffers that can be used to perform
additional divergence detection below the system call inter-
face [6, 27]. These ring buffers can be used to compare
function call arguments across variants, for example.

3. MVEE DIVERSITY ATTACKS
In order to exploit a set of variants running in an MVEE, it

is first necessary that each variant be vulnerable in isolation.
For example, suppose we have the situation in Figure 5, in
which we have three integer-valued stack variables: A, B,
and C. Suppose that the attacker can overflow A and that
the variant is successfully exploited if the attacker can write
0x3f into C (perhaps C represents a permission or autho-
rization level). In variants 1 and 2, C follows A on the stack
and so this overwrite can occur. In variant 3, C is below
A on the stack and so the attacker cannot achieve the win
condition by overflowing A. We say that the vulnerability is
not exploitable in variant 3, and by extension any variant
set including variant 3 will not be exploitable.

In a variant set including variants 1 and 2, the attacker
has two options for exploiting the vulnerability.

1. Parallel Exploitation He can overflow from A to C
in both variants simultaneously. This requires over-
flowing A by two words, each containing 0x3f. This
will overwrite both B and C with 0x3f and will only
work if storing 0x3f in B does not interfere with pro-
gram behavior (perhaps B is not referenced again or is
overwritten later with uncorrupted data).

2. Serial Exploitation He can perform a single-word
overflow, which overwrites C in variant 2 while leaving
B uncorrupted. If successful attack requires not alter-
ing B, then the attacker can exploit variant 2 and then
launch the attack separately against variant 1.

We will consider both types of attack in this section.

3.1 Attack Primitives and Attacker Goals
The effect of diversity techniques on the ability of an at-

tacker to achieve his goal depends on the mechanism the
attacker is using to accomplish some effect. In this section
we detail both the various attack primitives we consider and
the attacker goals that we attempt to prevent via diversity.
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3.1.1 Attack Primitives
Figure 6 provides a graphical reference to our attack prim-

itives, which we describe in more detail below.

Buffer Overflow In this form of attack, the adversary is
able to write data past the end of a buffer, overflowing
data stored at higher addresses.

Buffer Underflow The adversary is able to write data that
gets stored at memory addresses prior to the first ad-
dress that is part of the buffer.

Offset Attack The adversary is able to write an arbitrary
value at an arbitrary offset from some program object.

Attacks of the above three types are often bounded. For ex-
ample, an attacker may only be able to overflow a buffer by 4
bytes. Or offset attacks may be limited to word-sized values.
Word-sized offset vulnerabilities are particularly useful from
an attacker point-of-view, since they provide a very flexi-
ble and precise primitive that minimizes unintended data
corruption.

3.1.2 Win Conditions
The state changes that may enable attackers to achieve

their goals are varied and numerous. In order to focus our in-
vestigations, we have concentrated our effort on a few types
of state change that are known to play a part in attacks.

Chosen Value In this case, an attacker “wins” if he is able
to write a chosen value to a chosen object. For exam-
ple, “write the value 5 to creds->auth_level.”

Chosen Function Success in this case requires writing the
address of an attacker-chosen function to a particular
object. For example, “write &grant_access to call-

backs->handle_auth_failure”.

Data Property In some cases, the value an attacker writes
merely has to satisfy some property to result in attack
success. For example, suppose there is a 32-bit field
creds->is_admin that is used as a flag. An attack
on such a value may succeed provided the attack can
write any non-zero value to creds->is_admin.

In many cases, real attacks will face additional constraints.
For example, perhaps an attacker has to write a value that is
both a function address and a valid ASCII character string.
However, if we can show that chosen value attacks are de-
fended, then this necessarily defends against attacks that
have various constraints on the value written.

3.2 Attack Examples
We now discuss example attacks that are feasible against

variants running in an MVEE when certain combinations
of diversity techniques are applied. Critically, in many cases
these techniques provide more security in isolation than they
do when they are composed. As such, these serve as coun-
terexamples to general composability of diversity techniques
in an MVEE context.

Additionally, parallel exploitability of a variant collection
in an MVEE corresponds to attack generality in a non-
MVEE context. In a non-MVEE context, the allure of soft-
ware diversity is that it greatly increases the attacker work
factor. Instead of constructing a single payload that can
exploit any instance of an application, the attack must con-
struct different payloads for each application instance. How-
ever, if it is possible to construct an attack that simultane-
ously exploits a collection of variants in an MVEE context,
it is also possible to construct a single payload that exploits
all of those variants in isolation (e.g. in a non-MVEE de-
ployment scenario).

3.2.1 Skewed Return Attack
Suppose we have the setup depicted in Figure 7. At the

left of the figure we show the call stack for the program.
We assume that an access of object A can overflow, giving
the attacker the ability to write past the end of the stack
slot holding A. The attacker’s goal is to overwrite the return
address, which currently points to Proc1 (solid line), with a
reference to Proc2 (dashed line). Such an attack captures
a “return to libc” exploitation scenario. We present three
variants, where variants 1 and 2 differ in their code layout
(Proc1 is at a different address in each variant, as is Proc2).
Variant 3 is the result of combining code layout diversity
and stack layout diversity, where the order of items on the
call stack is shuffled. Thus variants 1 and 3 differ in both
their code layout and their stack layout.

Variants such as Variant 1 and Variant 2, that have had
their code layout randomized, provide strong protection against
stack-based control-flow hijack attacks, as depicted in Fig-
ure 8. Scenario A in that figure shows what the attacker
would like to write to the stack in each variant, labeled Goal
1 and Goal 2. As we can see, since Proc2 is at a different
address in each variant, and the return address is three stack
slots away from object A in each variant, these goals require
that different values be written into the slot three positions
up from object A. Since there is only a single payload, this
slot can only contain a single value. If we assume that code
is mapped at disjoint addresses in each variant, then it is
impossible for the attacker to generate a payload that stores
the required address in each variant.

Scenario B in Figure 8 illustrates how adding an addi-
tional diversity technique can actually weaken the level of
protection offered. Despite variant 3 adding stack layout di-
versity, the combination of variants 1 and 3 in an MVEE
is simultaneously exploitable, as the variants now have dif-
ferent relative offsets between the source object A and the
target slot (the return address). Thus, a single payload can
be constructed that writes different values to the return ad-
dress in each variant, acheiving parallel exploitation of the
variants in the MVEE.

In the terminology of Section 3.1.2, by adding stack lay-
out permutation, we have enabled chosen function attacks.
A similar effect occurs with data randomization. Just as
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Figure 8: An example of a variant set immune from attack (Scenario A) and one where adding stack layout
randomization enables a control-flow hijack attack (Scenario B).

code layout randomization with a fixed stack layout has the
potential to completely block chosen function attacks, so
data randomization can prevent chosen value attacks. In-
troducing stack layout diversity then enables a data-only
variant of the skewed return attack. Furthermore, the same
phenomenon, where layout changes enable new attack vec-
tors, occurs in the global space and on the heap as well.
Thus, when holding layouts constant it is important to do
this across all of the program’s segments. We further discuss
defenses against Skewed Return style attacks in Section 4.

3.2.2 Skewed Data
An additional sort of data-only attack is also feasible against

variant sets protected with data layout diversity. While data
layout diversity provides strong protection against chosen
value attacks, the attacker needn’t always need full control
over the value that is written to accomplish the intended
effect. In cases such as integers used as boolean flags, any
value other than zero will be interpreted as “true”. Thus,
if an attacker wishes to flip a branch that will evaluate to
“false” under non-attack conditions, simply writing a ran-
dom value is highly likely to result in the intended effect.

Data randomization divides the program’s data into sets
and associates different masks with each set. Values are
XORed with these masks when they are written to mem-
ory, thus obscuring the true memory contents. On memory
reads, they are once again XORed with the mask, restoring
the original value. If we take the variable sets to be static
alias classes, then a write that crosses alias classes—that is,

a memory error—will store a value that is essentially random
(it is the attacker’s value XORed with a randomly chosen
mask). However, as we just detailed above, writing random
values may be sufficient to gain control in some cases.

Furthermore, the problem extends beyond Boolean flags.
Buffer lengths stored in memory can be overwritten with
random values that will, with high probability, increase these
bounds. An increased stored length value will no longer
properly protect the associated buffer, enabling further mem-
ory corruption attacks. We call these attacks skewed data
attacks, since they are enabled whenever the set of safe data
values is much smaller than the set of unsafe data values.

Skewed data attacks can potentially succeed at establish-
ing the Data Property win condition from Section 3.1.2. The
cross checks described in Section 2.2 can prevent these at-
tacks, and we detail this protection in Section 4.

3.2.3 Padding and Isolated Attacks
Inside of an MVEE, an attack may result in writing some

fixed value to different, non-corresponding regions of mem-
ory in each variant. Not only is the impact of an attack
dependent on what is overwritten, but this can also con-
strain an attacker’s capabilities. For example, different lay-
outs may force an overflow that overwrites a username vari-
able in one variant to overwrite a function pointer in another.
Without further manipulations, the attacker cannot write a
username that is an invalid function pointer without being
detected when the function pointer is used.



While padding can increase the number of ways a data lay-
out may be shuffled, inserting padding into variants can help
the attacker when it removes constraints on an attacker’s
payload. If the attacker can overwrite a variable of inter-
est in a single variant, but only unchecked padding in the
others, then they can attack that variant independently of
the others. Alternatively, attackers may be able to overtake
the entire set by attacking each variant individually, such
as by overwriting function pointers in each variant in turn
before the pointer is accessed by the running programs. It
is better to constrain the possible attacks by using canaries
or cross-checked values in lieu of unchecked padding.

Consider the system depicted in Figure 9, which may be
considered analogous to that shown in Figure 7, except that
rather than having three variables, there is only one, and
so padding has been introduced. Similarly to the attack
shown in Figure 8, a successful attack is possible by taking
advantage of the skewed nature of the stack; in contrast
to Figure 8, however, the attacker-inserted return address
overwrites unused padding in the first variant rather than
a potentially live variable. Thus, padding has further eased
the attacker’s burden.

3.2.4 Cross-stack-frame attacks and SafeStack
Some existing stack protection techniques like SafeStack [15]

limit stack buffer overflows by moving stack variables poten-
tially vulnerable to overflow onto a separate “unsafe stack”.
Return addresses and other variables only accessed safely are
placed on the “safe stack,” and the attacker cannot overflow
from the unsafe stack onto these values.

Buffer overflows that write past the end of a stack vari-
able and continue on to overwrite a variable in a parent stack
frame can be very difficult to exploit in an MVEE setting.
When code layout has been randomized, it can be difficult
to overwrite the saved return address with desirable val-
ues in all variants. Furthermore, overwriting the saved base
pointer addresses stored on each variant’s stack can be dif-
ficult when the desired values are in disjoint regions from
variant to variant, such as when applying ASLR. However,
applying protection techniques like SafeStack can make ex-
ploiting these overflows that span stack frames easier. After
applying SafeStack, elements on the unsafe stack are adja-
cent to unsafe stack elements from the parent stack frame,
but the saved base pointers and return addresses no longer
exist between the two, as they are on the safe stack. Now the
attacker may be able to perform data-only overwrites from
the unsafe stack onto variables on the parent stack frame’s
unsafe stack without being constrained by writing valid base
pointer and return address values in all variants.

4. SECURE VARIANT SETS
As a byproduct of exploring the MVEE attack space, we

have developed some best practices in terms of variant selec-
tion for MVEEs. The approach is based around combining
randomized data with deterministic layouts. Since MVEEs
attempt to run variants in parallel as much as possible, and
modern CPUs frequently have at least four cores, we present
suggestions for sets of four variants that together avoid the
attacks described in Section 3.2. The variants accomplish
this while still providing for some layout randomization to
help protect against attack classes other than those consid-
ered here.
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Figure 10 presents a graphical overview of our variant set
construction. The color of the main enclosing box indicates
data layout, with matching colors indicating matching lay-
outs. So variant 1 and 2 have the same relative layout for the
stack, the globals, and the heap, a property we call twinning.
Section-level randomization such as ASLR may relocate the
stack base, heap base, and global section, but within each
section the relative positioning of objects will be the same.
This ensures that relative overflows from object A with off-
set o within a single memory section (stack, heap, or globals)
will necessarily land in the same target object.

The color of the internal boxes represent code layout di-
versity and data randomization keys, with matching colors
indicating matching layout and matching keys. Crucial to
the security of this combination of variants is the fact that
varying code layout and data randomization keys changes
the expected contents of memory. So the value of a pointer
to function f will be different in different variants due to
code layout randomization. A data value stored in a global
will be different due to data randomization. When these
per-object variations are combined with the consistent rela-
tive positioning of objects that twinning provides, it helps to
set up the situation in Scenario B of Figure 8, where certain
types of exploitation are not possible due to the attacker’s
inability to generate a payload that has the intended effect
on each variant.

The security properties described so far can be provided
by just variant 1 and 2 together. Adding variants 3 and 4,
which follow the same construction methodology but with
new relative layouts for the stack, heap, and globals, helps
to provide protection of the sort depicted in variant 3 from
Figure 5, where the source of the overflow (A) and the tar-
get (C) are positioned such that the target cannot be over-
written. If more parallelism is available, even more pairs of
twinned variants could be included, increasing the chances
that at least one set makes a particular targeted relative
write impossible.

Finally, in order to protect against the skewed data attack
described in Section 3.2.2, we can include cross checks that
compare the un-masked data values in each variant to en-
sure that they match. With data randomization enabled, a
write into an object A that crosses alias set boundaries (e.g.
a write resulting from a memory safety vulnerability) will
result in different values being written to each cell. While
it may be sufficient to write a non-zero value in order to
flip a conditional branch and thus alter program execution,
each variant will contain a different non-zero value, which
the cross check will detect. Our variant generation tools
currently support inserting such custom cross-checks for all
values that are read from memory and flow into conditional
branches.
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Figure 10: Our suggested combination of diversity
techniques for maximizing diversity-based protec-
tion while avoiding the attacks described in Sec-
tion 3.2.

Limitations.
The combination of techniques described here are selected

to avoid the attacks described in Section 3.2 and maximize
the changes of detecting attempted exploitation. However,
because many elements of variant generation are random-
ized, there is still a small probability of failure. For exam-
ple, data randomization could choose keys that are the same
across variant sets (though this would be highly unlikely),
and stack layout randomization could choose unfortunately
stack layouts that place some objects at the same relative
positions across variants.

Heap randomization adds additional entropy challenges,
since overall entropy level has to be balanced with practical
concerns such as memory fragmentation and page table size.
We are currently exploring methods to both minimize the
chances of unintended cross-variant overlap as well as to
deterministically generate variant sets with good security
characteristics.

5. RELATED WORK
There has been prior work on the security of diversity

techniques in a single-variant context [9, 23, 25, 26]. In
contrast to this work, we focus on attacks on diversity in a
multi-variant context. Common attack avenues used in prior
work such as timing channels or information disclosure vul-
nerabilities seem difficult or impossible to exploit in a multi-
variant context. In our work, we show that there are attacks
on diversity that succeed in a multi-variant context. These
attacks rely on a stronger attacker model, which includes
prior knowledge of implementation details of the variants.
We consider this to be a fair assumption since it is the same
threat model targeted by multi-variant execution work such
as [7].

Cox et al. [7] proposed N-variant systems as a security
technique in 2006 and noted that security depends on hav-
ing, for each attack class targeted, a pair of variants that
include differences designed to block that class. For exam-
ple, their address space partitioning technique is designed
to disrupt attacks that depend on writing absolute code ad-
dresses. They note the pitfalls with respect to arbitrary com-
position but do not give specific examples of attacks, which
we provide here. They also provide a method for combin-

ing n diversity techniques safely using n + 1 variants, while
speculating that more efficient combinations may be possible
without sacrificing security. In this paper we provide such an
efficient combination, combining 5 diversity techniques into
4 variants, although with probabilistic rather than absolute
guarantees in some cases.

Techniques similar to our data randomization techniques
were considered in [20]. These techniques rely on leveraging
domain knowledge to change the mapping from concepts to
representation. The data randomization technique we ap-
ply is fully automated and only uses knowledge that can be
obtained through static program analysis of aliasing rela-
tionships. This provides probabilistic rather than absolute
security guarantees.

In [13], probabilistic diversity techniques such as those we
consider are experimentally compared in a multi-variant ex-
ecution environment. Good combinations of diversity tech-
niques were identified based on these experiments. One
shortcoming, noted in the paper, is that simple recompi-
lation often breaks concrete attacks and the question of
whether an attack could be tweaked or adapted to work in
a multi-variant environment is difficult to answer at scale.
This limits the extent to which large-scale experimentation
can be used to evaluate diversity effectiveness. In this work
we consider general attack primitives rather than specific
attacks, sidestepping this issue.

6. CONCLUSION AND FUTURE WORK
In this paper we have provided an initial exploration of

the attack space for multi-variant systems. We have de-
scribed attacks that are possible in such systems and demon-
strated that adding additional diversity techniques can actu-
ally compromise security in a multi-variant context. We also
presented a method for constructing variant sets that avoid
these attacks, while also incorporating randomness across
variants for probabilistic protection against additional at-
tacks.

Together these results enable more effective use of multi-
variant execution environments. Future avenues of explo-
ration include considering additional attack classes and di-
versity techniques. Additionally, the security guarantees
provided by some techniques are still probabilistic in nature.
For example, stack permutation only probabilistically pre-
vents stack overflows from reaching target variables. Going
forward, we will investigate whether these security guaran-
tees can be made to hold in all cases.
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