-ARM-Droid

A Rewriting Framework for
In-App Reference Monitors
for Android Applications

Benjamin Davis, Ben Sanders, Armen Khodaverdian, Hao Chen
University of California, Davis

Mobile Security Technologies 2012

Why In-App Reference Monitors?

Current Android limitations

Users have limited insight into app behavior

Platform provides very limited control over apps
I-ARM-Droid: reference monitors for Android apps

Fine-grained control over app behavior
Practical and flexible for a variety of policies

Why Not Platform Modifications?

Deployment challenges
Proprietary binaries for device hardware
Requires rooting phone, voiding warranty, etc.

Inflexible
One reference monitor applied to all apps

Reference monitor capabilities are pre-defined by
platform

I-ARM: In-App Reference Monitors

Android App

User Input

I-ARM: In-App Reference Monitors

Android App

Embed
Reference
Monitor

User Input I-ARM

I-ARM: In-App Reference Monitors

| 6|
Android App

Embed

Reference ‘ Android App
Monitor

Reference Monitor

Deploy to unmodified

User Input -ARM Android Platform

I-ARM Policies

Design: method call interposition

Policies include
Target method signatures

java.io.URL.openStream()
Custom handler behavior

iarm.URL.openStream(URL obj) {
if (call site in ad library) { return obj.openStream(); }
else { Log.d(“blocked openStream”); throw IOException(); }

}

Rewriting Android Apps

_everage structure of Dalvik VM bytecode
nsert custom handlers for each target method

dentify target method invocations
Rewrite app to invoke custom handlers instead

Custom Method Handlers

Handlers: a static method for each target method

Rewrite instructions based on method type
Static methods
Instance methods
Constructors

Handling Virtual Method Invocations

- Identify classes with non-final target methods
Activity

setContentView()

H

CustomActivity

setContentView()

Handling Virtual Method Invocations

| 11|
- Identify classes with non-final target methods

- Create “wedge” class for each: ey
setContentView()
Extend target method’s class N

Handlers: override all target methods

WedgeActivity
@Override

setContentView()

Handling Virtual Method Invocations

- Identify classes with non-final target methods
- Create “wedge” class for each: i

setContentView()

Extend target method’s class N

Handlers: override all target methods

WedgeActivity

- Inject wedge in app class hierarchy

@Override
Developer class now extends wedge class FEiEe=na =iy

- Intercept all virtual method invocations ﬁ

CustomActivity

setContentView()

Discussion: Completeness

Policy completeness
Rely on other tools (e.g. Stowaway, CCS '11)

Rewriting completeness

Reflection

We detect calls to reflection API statically — insert handler
to perform dynamic inspection

Native code
Requires platform-dependent rewriting techniques
Uncommon (< 10% of apps, [Zhou et al. NDSS 2012])
We detect existence and invocation

Implementation and Evaluation

Compatibility & Functionality

Applied policies to 30 top apps from Android Market
No per-app manual effort required for rewriting
Performance: handlers have low overhead

Less than 0.2 microseconds on HTC Thunderbolt
Size: minimal impact

90 target methods increase code size by <2% (median)

Conclusion

In-app reference monitors for Android
ldentify and interpose on target method calls
Flexible, practical and efficient design

